The Thermonuclear Runaway in SNe Ia (How to run away?)

by P. Hoeflich (Austin) & J. Stein (Jerusalem)

- Introduction and open questions
- 2-D calculations for the thermonuclear runaway
- Discussions and conclusions

Scenarios: What do we observe as a SNe Ia?

Thermonuclear explosion of a white dwarf

1) Hydrodynamical phase

- sudden release of about 2E51 erg by nuclear burning of a WD
- => object becomes unbound

- sound velocity is about 5,000 to 10,000km/sec
- radius of objects 1500km(WD)
- => hydrodynamical time scale lasts seconds

Photosphere

2) Subsequently: Phase of free expansion (homologeous phase)

We observe a rapidly expanding envelope as a the results of the explosion !!! expansion velocities are 1000 to 20,000 km/sec

we observe the light emitted from the photosphere

- With increasing time, the envelope becomes more an more transparent (due to geometrical dilution)

=> The time evolution of the emitted light allows to trace the radial density and chemical structure of the envelope !!!

1) Progenitors: Accreting White Dwarfs

Start: WD of 0.6 to 1.2 Mo

Evolution: Accretion of H, He or C/O rich material

Explosion: Ignition when nuclear time scales are shorter than hydrodyn. TS

2) Progenitors: Merging White Dwarfs

Influence of the MS on the structure of the WD

(Dominguez, Hoeflich, Straniero 2001, ApJ 557, 279)

Progenitor Structures, Metallicity Dependence and Consequences

for the Light Curves of SNeIa (Hoeflich, Nomoto, Umeda & Wheeler 2000, ApJ 528, 854)

Influence of C12(alpha,gamma)O16 on the Structure

Dominguez, Hoeflich, Straniero 2001, ApJ 557, 279)

- Size of C-depleted core depends on the nuclear reaction rate (uncertainty fac. 5)

Caughlan et al. 1985, At.Data Nuc. Tab. 32, 197

Caughlan & Fowler 1988, At.Data Nucl. Tab 40, 283

Astrophysical Applications favor a high rate (e.g. Stellar evolution, LCs

Explosion Scenarios of White Dwarfs (Delayed Detonation)

Deflagration: Energy transport by heat conduction over the front, v <<v(sound) => ignition of unburned fuel (C/O)

Detonation: ignition of unburned fuel by compression, v = v(sound)

Propagation of the Deflagration Front (from Khokhlov, 2001, ApJ, in press)

Burning of a WD at 2.5 sec (from ATP-2001 HK)

- Blobs mix into layers corresponding to about 8000 km/sec in the hom. ph.

Some Remarks:

- pre-expansion depends on the amount of burning (-> does not depend on details of burning)
- expansion becomes spherical
- but inhomogenities in the abundances
- size and amount of burning depends on C/O

Transition from Deflagration to Detonation

Possible mechanism:

- 1) Zeldovich mechanism: Mixing from burned and unburned material
- Problem: works only for low fluctuations in the background
- 2) Crossing shock waves (e.g. Livne 1997)
- Problem: Is the 'noise' sufficient or do we need some reflection at boundaries?
- 3) Shear flows at low densities (e.g. Livne/Aspen workshop)
- Problem: Does it work?

Explosion of a delayed detonation model

- progenitor : 3Mo on MS with 1/30 of solar metallicity
- Properties of WD: a) Chandrasekhar mass b) central density 2E9 g/ccm
- Properties of deflagration front: a) v(defl.) with C1=0.15 b) rho(tr) = 2E7 g/ccm

red: complete b. (Fe, Co, Ni); green: incomplete b. (Si, S, ...); blue: C and O

Chemical Structures for Delayed-Detonation Models C/O-WD; rho(c)=2.E9 g/ccm; M(MS)=5Mo

- start with slow deflagration front RT unstable -> acceleration
- Prompt transition to detonation
- Produces both normal bright and subluminous SN
- Avoids problem electron capture at the center.

(with new rates + adaptive mesh-hydro. => rho(c) may be up to 3.5E9g/ccm)

(Fits well for a lot of S NeIa)

Correlations for DD-Models

Example: rho(c)=2.E9g/ccm; M(MS)=5Mo

Post-maximum IR-Spectra of DD200 in Comparison with SN86G

IR-Spectra of the Subluminous SN1999by

Observation by C. Gerardy (PhD thesis)

- M(V) on May 8

Rem: Quoted velocities are based on the Doppler shift of absorption minima (Uncertainty is about 2000 km/sec)

Structures and IR Spectra for Subluminous DD-Models

C/O-WD; rho(c)=2.E9 g/ccm IR-flux 1 & 2 weeks after M(V)

- Only very subluminous models are consistent with SN1999bu
- Layers up to 12-15000 km/sec must undergo explosive O-burning
- Strong mixing or extended Ni-tails are not allowed (PDD5 and PDD1c problems)
- Models shall not mix large blobs into the outer layers during deflagration!!!

Is this specific/the reason for subluminous SNeIa ???

Polarization of the subluminous SN1999bu vs. prolate model

(PhD thesis of A. Howell & Howell, Hoeflich, Wang, Wheeler, ApJ, in press)

=> The explosion is determined by the preconditioning of the WD

- the propagation of the deflagration front depends on the C/O ratio
- the DD-transition may depend on
 - a) the C/O ratio
 - b) the location and jump in the chemical profiles of the WD
- Subluminous SNIa may be produced by rapid rotation of a WD

Questions

- Does the chemical profile 'survives' on the way to the runaway?
- Does the thermonuclear runaway occur in multiple spots?
- Does we start off with a static WD?

Models for the Progenitor Evolution

A) Spherical accretion models

Physics:

- implicit, quasi-static evolution in first order for the standard stellar structure equation (Hoeflich et al. 1998)
- energy transport by
 - a) conduction (Itoh et al. 1983)
 - b) convection in the mixing length theory
 - c) radiative diffusion including Kramer's and ff-opacities
- detailed nuclear network (35 nuclei up to 24Mg)
- detailed equation of state (Nomoto et al. 1982)
- thermal pulsed of H/He burning are treated by Sato (1980)

Recipe:

- Take the core of a star (M<8Mo) at the end of He burning
- Accrete H, He or C/O material with a given rate
- Follow the evolution over 1E6 to 1E8 years up to the explosion

B) Follow the last few hours till runaway in multi-D

Physics:

- implicit, 2-D hydrodynamic equations in first order in time
- interpolated energy for nuclear burning calibrated by detailed network
- detailed equation of state

Recipe:

- Remap 1-D structure at about 5 hours before runaway and follow the evolution

Domain: 2.08E8cm Logarithm grid in r Grid(r/theta): (191/31)

The thermonuclear runaway of a WD (Hoeflich&Stein,2002,ApJ, in press)

Initial structure 2 hours before runaway

The thermonuclear runaway of a WD

Time evolution from -3 to -0.5 hours with Dt=0.5h and at -900, -450, -225, -1 sec

The thermonuclear runaway of a WD

Time evolution from -3 to -0.5 hours with Dt=0.5h and at -900, -450, -225, -1 sec

The thermonuclear runaway of a WD

a) Change of C/O and velocity in the WD (Mch, M(MS)=3Mo)

Change of the CO before runaway

velocities (longest = 100 km/sec)

How to estimate the final C abundance in the center?

- entropy is almost constant in the convective center
- runaway occurs at an mean entropy is about 10.1 (up from about 9.7)
- C originates from to mixing in of C-rich material (not the nuclear burning)
- => Determine the radius of entropy corresponding to the runaway and mix to estimate C

Corrolar: 'Classical' overshooting is not allowed

Temperature and velocity evolution before runaway

Longest velocity vector (black,red,green) =(40/80/120 km/sec); 500E8 K< T < 1.E9 K

- size of shown domain: 420 km
- size of WD 1800 km
- ignition close to the center at within one cell (about 5km resolution, <65km)
- ignition occus due to compression of an element due to circulation when the mean T8 of the turbulent element > 9
- v(turb) > v(lam) => early phase of nuclear burning is governed by preconditioning of WD

Temperature and velocity evolution before runawayLongest velocity vector in black = 50 km/sec; 600E8 K< T < 1E9 K

Some Uncertainties and Open Questions

a) C12(alpha,gamma)O16 reaction rate

Influence on the ignition point:

Enhancement factor F	Change of final C-concentration	Distance of ignition
200	26 +- 1 %	90 km
50	32.5	86 km
20	35.5	71 km
4	36.2	32 km
1	37.0	27 km

=> likely, no qualitative change of the results

b) Some limitations (just mentioned)

- problem of invers cascades (for incompressible fluids)

(statistically, turbulent cascade propagates towards small scales in 3-D where it decays by molecular viscosity whereas 2-D cascades go to larger scales => life-times goes to infinity for 2-D for low viscosity)

This law results from quadratic invariants in mom.-energy equations In compressible fluids, first order term do not vanish and LT become similar (MHD-turbulence, e.g. Stein & Ostriker 2001) but still ...

- numerical viscosity is important (limited resolution)

Final Discussions and Conclusions

- Change of the physics of the thermonuclear runaway
 - a) classical, spherical picture of compressional heat (Sato et al. 1976)
 - -> rising blobs in a static WD (Garcia & Woosley 1995)
 - -> (now) importance of initial velocity field

The explosion is determined by the precondioning of the WD!!!

- The chemical profile 'survives' the runaway but the central C/O increases from 23 % to 37%
 - -> energy release during the deflagration phase is modified (scale of instabilities)
 - -> reduction of jump in C/O by a factor of 3 and possible effect on the DD-transition
- Ignition occurs in one confined region (no multiple spots in our example. Is this true in general?
- Speed and structure of the deflagration front will be determined by the large scale velocity fields prior to the runaway